

(A) GENERAL DATA

Title	Master's Programme in Meteorolgy				
Degree	Meteorologist				
Туре	Degree program				
Level	Master level				
Accreditation number	FF/1442-2/2015.				
Faculty	Faculty of Science				
Institute	Institute of Geography and Earth Sciences				
Department(s)	Department of Meteorology				
Language	English				
Duration	4 semester				
ECTS credits	120				
Place	Lágymányosi Campus				
Minimum number of new students ¹	3				
Maximum number of new students	10				

¹ If the number of admitted students does not reach threshold the program may be cancelled.

Eötvös Loránd University Faculty of Science International Degree Programs 2017/2018

(B) PROGRAM CONTENT

Short description:

The meteorology master program is intended to be a training of meteorologists who will have appropriate atmospheric oriented scientific viewpoint and high level of theoretical and practical knowledge by the end of the programme. They will have the skill set to be able to apply the practice, measurement and observation oriented analysis methods, as well as the knowledge for weather forecasting and climate modelling. They will also obtain scientifically based meteorological and environmental viewpoint. Depending on their ambitions they will be able to continue their studies in a PhD programme. The courses are divided into two parts. Students have compulsory courses covering general meteorology fields required for everybody (e.g., advanced mathematics, fluid dynamics, dynamical meteorology, informatics, climatology, synoptical meteorology, environmental protection and numerical modelling). By the end of the first semester, the students have to choose a specialization: weather forecaster or climate researcher. The specialization will cover 30 credits of compulsory classes in the next three semesters. The courses for the specializations cover the full spectrum of the selected field. Students with missing background in a particular field of meteorology are required to fulfil prescribed BSc classes up to 20 additional credits. The master thesis work is taken into account as 20 credits.

Strength of program:

The meteorology master studies offer high level of theoretical meteorology courses as well as diverse courses on applications. Students are encouraged to participate in the projects of the professors, where they can learn the newest methods of a certain research field; acquire experience in working in team and have a glimpse on project related administration. Students who are willing to spend extra work on a subject lead by their professors can participate in a national scientific competition among students from all universities. This competition have more than 70 year of history and acknowledged advantage regarding PhD studies in Hungary and plays a vital part in the higher education system in the country. In addition to the faculty members, lead researchers of the Hungarian Meteorological Service, the Meteorology Division of the Hungarian Military, and the Meteorological Service of the Liszt Ferenc International Airport also offer a limited number of thesis supervisions. This helps the students to find the most appealing topic for their thesis lead by the most appropriate expert.

(C) STRUCTURE

A mintatanterv *Meteorologist_MSc_list_of_courses.pdf* néven mellékelve.

					sem	ester						
code	course	1st		2	nd	3rd		4th			- L- : I : 4 *	credits
		١.	p.	I.	p.	I.	p.	١.	p.	exam	p.e.	
I. Mathe	matics, physics, informatics	atics mod	dule (Istv	rán Maty	asovszky)					1	
1.1	Analysis	2	1							5	5	3
1.2	Informatics in meteorology	0	2								5	2
1.3	Fluid dynamics	3	0							5	5	3
1.4	Thermodynamics			2	1					5	5	3
1.5	Partial differential equations			2	1					5	5	3
	Summary:	5	3	4	2	0	0	0	0			14
II. Dynar	nic and synoptic meteor	rology m	odule (T	amás We	eidinger)							,
.1	Dynamic meteorology 3	2	1							5	5	3
11.2	Synoptic meteorology 3	2	2							5	5	4
11.3	Dynamic meteorology 4			2	1					5	5	3
11.4	Dynamic modelling 1			3	0					5	-	3
11.5	Synoptic meteorology 4			2	1					5	5	3
II.6	Mesosynoptics					2	1			5	5	3
		4	3	7	2	2	1	0	0			19
III. Atmo	ospheric Physics and clin	natology	module	(Barthol	y Judit)							
III.1	Atmospheric physics 3	3	0							С	-	3
111.2	Climatology 2	2	1							5	5	3
111.3	Analysis of climate data 1	0	2							-	5	2
111.4	Surface-atmosphere interactions			4	0					с	-	4
111.5	Climate models					2	0			с	-	2
III.6	Physical oceanography					1	0			5	-	1
	Atmospheric environment							-		_	_	
111.7	protection							2	1	5	5	3

International Degree Programs

2017/2018

	Summary:											
		5	3	4	0	3	0	2	1			18
IV. Meteorological methods (Mészáros Róbert - coordinator)												
	Meteorological	1	1	1	1	1	r –	<u> </u>		[1	
	instruments and											
IV.1	observations	1	2							C	5	3
IV.2	Mid-semester practice	0	1							_	3	1
			-								5	-
IV.3	Summer practice			0	1					-	3	1
	Satellite											
IV.4	remote sensing			2	1					с	5	3
IV.5	Time series analysis					2	1			5	5	3
	Summary:	1	3	2	2	2	1	0	0			11
V. Optio	nal subjects (Ferenc Ács) Any ph	iysics, m	athemati	cs, chem	istry, v. r	neteorol	ogy cour	se (it is r	ecommendec	I)	•
		1	1	-			1	1			1	
	Meteorology in	2	0							<u> </u>		2
V.1	english	2	0							C	-	2
V.2	Micrometeorology			2	0					с	-	2
	Ecological											
V.3	climatology							2	0	С	-	2
	Trace gas flow											_
V.4	modelling							2	0	C	-	2
V.5.	Numerical modelling 2							0	2	5	-	2
	Modern							-		-		_
N C	meteorological data					0	2			C C		2
V. 6.	Programming					0	2			L		2
	problems in											
V.7.	meteorology			0	2					5	-	2
V 8	Boundary Layer			2	0					C		2
Summa	ry (should be added to			2	U					8	-	2
the end	d of the semester 10):											
		semester										
											10	
code	course		/.	2	8.	,	9.	1	0.	account	credits	
		١.	р.	l.	p.	١.	p.	١.	p.	exam	p.g.	
			1.		I.				1-		r o	
VI-A We	ather forecasting specia	lisation	(Tasnádi	Péter)								
		1	1		1	1	1	1			1	
	Informatics in			1	2					-	-	2
vi-A.1	weather forecast			1	2					5	5	3
VI-A.2	practice 1			0	3					-	5	3
	Atmospheric				_							
VI-A.3	energetics			2	0		<u> </u>	<u> </u>		5	-	2
	Synoptic									_	_	-
VI-A.4	meteorology 5					2	4			5	5	6
VI-A.5	Dynamic modelling 2					2	1			5	-	3
	Weather forecast		1		1					-	1	-
VI-A.6	practice 2					0	3			-	3	3

Eötvös Loránd University Faculty of Science

International Degree Programs

<u>201</u>7/2018

VI-A.7	Random field analysis							2	1	5	5	3
VI-A.8	Numerical prediction					3	0			5	-	3
VI-A.9	Aviation meteorology							2	0	С	_	2
VI-A.10	Media meteorology							2	0	С	-	2
Summary: 0 0 3 5 7 8 6 1											30	
VI-B Clim	ate research specialisa	tion (Bar	tholy Jud	dit)								
VI-B.1	Analysis of climate data 2			1	3					5	5	4
VI-B.2	Global and regional climate change			2	0					5	-	2
VI-B.3	Climate modelling					2	1			с	5	3
VI-B.4	Ocean and cryosphere			2	0					С	-	2
VI-B.5	Hydrology					2	1			5	-	3
VI-B.6	Chemical processes in the atmosphere					2	1			5	5	3
VI-B.7	Agroclimatology					1	1			С	-	2
VI-B.8	Renewable energy sources							2	1	С	-	3
VI-B.9	Biogeochemical processes							2	0	С	-	2
VI-B.10	Statistical climatology							2	0	С	-	2
VI-B.11	Urban climate							2	2	5	5	4
	Summary:	0	0	5	3	7	4	8	3			30
						Thesis						
VII.1	Thesis related professional lab 1					0	4			-	5	4
VII.2	Thesis related professional lab 2							0	16	-	5	16
	Summary:	0	0	0	0	0	4	0	16		•	20
							1		1			I
					Su	mmarys						
lectures (We	s + practical exercises eather forecasting	17	12	22								120
lectures	specialisation) s + practical exercises	17	12	24	11	16	14	10	18			120
(C	limate research specialisation)				9	16	10	12	20			
All sem foreca	tester load (Weather sting specialisation)	2	9	3	33	3	0	2	8			
All sen resea	nester load (Climate arch specialisation)	2	9	3	33	2	26	3	2			

Eötvös Loránd University Faculty of Science International Degree Programs 2017/2018

(D) CAREER

Career opportunities:

The Hungarian Meteorological Service, the Hungarian Military and the private meteorological sector are major employers of our graduates. Furthermore, a large number of graduates continue their research as PhD students in various universities in Europe.

The degree enables the students

- To understand and forecast weather events
- To be able to use, adapt, and modify climate and weather models
- To assess model results and measurements of related fields to meteorology

Job examples

Weather forecaster at national meteorological services, at military and commercial airports, and in public sector. Researcher at national meteorological services and research institutes. PhD studies, university professorial jobs. Environmental analysis in public sector.

(E) ADMISSIONS FOR THE ACADEMIC YEAR 2017/2018

TUITION AND OTHER FEES

	EU/EEA students	non-EU/EEA students
Tuition fee/semester	4190 (EUR)*	4190 (EUR)*
Application fee	160 (EUR)	160 (EUR)
Registration fee	60 (EUR)	60 (EUR)

* It is possible to apply for scholarship to reduce tuition fee.

Offered for the academic year 2017/2018?	YES
Deadline for applications – September intake	15 February 2017
Is there a February intake?	NO

Admission requirements – Language requirements:

Applicants should possess a BSc degree in Meteorology (or equivalent) and an appropriate command of either the English or the Hungarian language

BSc – courses attended should – by all means – include:

- Mathematics (Basic, Analysis, Partial Differential Equations, Probability and Statistics) worth at least 12 credits,
- Physics (Basic, Mechanics, and Thermodynamics) worth at least 12 credits,
- Informatics (Numerical Methods, Programming, Data Processing) worth at least 6 credits,
- Meteorology (Basic, Climatology, Dynamic Meteorology, Synoptic Meteorology, Atmospheric Physics, Atmospheric Chemistry, Applied Climatology) worth at least 10 credits
- optional Earth Sciences (general astronomy, geography, geophysics, geology and cartography) worth maximum 10 credits.

One-third of the missing courses can be completed during the MSc studies as additional courses.

The successful applicant must have a good command of English. Several kind of internationally respected certificate of English language at advanced level is accepted.

Admission requirements – Documents to submit with application:

- ✓ Bachelor-level degree
- ✓ Transcript of records
- 🖌 CV
- Motivation letter

- ✓ Letter of recommendation
- ✓ Application form
- ✓ Copy of the main pages of the passport (needs to be valid)
- ✓ Passport photo
- ✓ Medical certificate
- ✓ Copy of application fee transfer
- Other: synopsis of the completed relevant courses

Application procedure:

As a first step, it is suggested to contact the program coordinator by email to obtain a guess on the reliability of your application based on the previous achievements and certificates. The coordinator will inform you on your chances to be enrolled without an entrance examination, or you have to take part on it. General information about studying in Hungary can be obtained from the faculty coordinator.

The official application starts by completion of the registration form (<u>https://registration.elte.hu/</u>) and by the payment of the application fee. Within few weeks the applicant will be informed, if he/she is enrolled due to the high quality of the previous studies, if he/she needs to take part at an entrance exam in Budapest, or the application is refused. In the case an entrance examination, the details of the written/oral exam in Budapest will be arranged by emails.

Procedure of the entrance examination:

The Applicant's abilities in Meteorology, Mathematics and Physics will be orally tested by an examination committee (either personally or by telecommunication).

(F) CONTACT

Website: http://nimbus.elte.hu/index_en.html

Program leader

Name: Prof. Judit Bartholy

Program coordinator

Name: Ms. Hajnalka Breuer

E-mail: bhajni@nimbus.elte.hu

International program coordinator

Name: Angelika Újváry

E-mail: inter@ttk.elte.hu